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Chapter 1: Introduction

Review of Radiation Sources

Because of potential application in radar and

communications, since the 19140's there has been a great

amount of interest in producing radiation rang'ing in

wavelength from 30 cm. down to infrared wavelengths of 1 to

10 microns. Two types of sources have filled in much of

this part of the electromagnetic spectrum. Traditional

micro-wave sources, such as the klystron, the magnetron, and

the traveling wave tube, are capable of producing very high-

power radiation down to wavelengths of about 1 cm. They

are, however, ultimately limited by the fact that they -nust

contain some sort of resonating structure that is on the

order of the wavelength of the produced radiation~ in size.

Thus, as shorter wavelengths and high power are asked for

from these devices, several problems, such as tolerances in

manufacturing, heat dissipation, and electron-beam focusing

become harder and harder to overcome. and eventually beconme

insurmountable. The limit of this technology is radiation

of wavelengths of about 1mm with power levels in the 100's

of watts.

In the infrared part of the radiation spectrum, lasers

are very effective sources. They will produce high power

radiation at any wavelength for which a molecule with the
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desired energy difference in electron orbital energy levels

can be found. This is, however, also lasers' major

shortcoming; they will not work at any given wavelength, but

only those for which such a molecule can be found. Thus

they have not been able to fill up the wavelength spectrum

smoothly, but rather fill it with randomly placed lines of

producible radiation. Therefore, the spectrum of lasers and

traditional microwave sources looks something like that

shown in Fig. 1-1, with smooth filling but diminishing power

down to 1 mm., and then with spotty filling down to optical

wavelengths.1

Free Electron Lasers. the Cerenkov FEL

In the last ten years, the desire to fill the gap

between 1 cm. and 10 microns, and to smooth in the spotty

coverage below 10 microns, has generated a high level of

interest in another type of source, the free-electron laser

or FEL. There are several types of FELs, but they all have

one thing in common, they are all powered by a high energy

electron beam. In general, an FEL will consist of such a

beam, plus some sort of interacting structure which can

couple energy out of the beam and into an electromagnetic

wave. FEL's have the advantage over lasers in that they are

in principle continuously tunable over any wavelength, and

they have the advantage over traditional microwave

|L
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technology in that the FEL's dimensions can be many times

larger than the wavelength of the radiation. Exactly how

these two advantages are realized is peculiar to each type

of FEL, and a survey of the mechanisms is beyond the scope

of this paper. We will, however, take a look at the

Cerenkov FEL, since it is the type of FEL with which this

paper is concerned.

In a Cerenkov FEL the mechanism for coupling energy out

of the electron beam is an interaction between the beam and

a dielectric. This interaction depends on the fact that the

electrons in the beam can be made to travel at velocities

greater than the speed of light in the dielectric. It was

shown around the turn of the century that any charged

particle traveling at superluminal velocities would radiate,

sending out an electromagnetic shock-wave similar to the

bow-wave of a boat traveling over water at a speed greater

than the speed of surface water-waves.2 This electromagnetic

shock-wave, known as Cerenkov radiation, is the source of

radiation in the Cerenkov FEL. The electron beam, traveling

at a speed greater than light in the dielectric, is

propagated down a waveguide partially filled with

dielectric. By keeping the beam close to it, the dielectric

is "tricked" into thinking that there actually is a

superluminal-velocity particle traveling through it, and

Cerenkov radiation is emitted.

!hi



Now. for Cerenkov radiation in an infinite medium, all

frequencies for which the velocity of the particle is

greater than the phase velocity of the wave in the medium

are emitted. 3 Therefore, in the Cerenkov FEL an infinite

number of frequencies will be emitted due to Cerenkov

radiation when the beam first enters the guide. However,

since the radiation is emitted in the waveguide, and since

each frequency emitted will travel down the guide at a

discrete phase velocity, there will be a single or a few

frequencies that will travel with a phase velocity equal to

the velocity of the electron beam. The waves corresponding

to these frequencies will therefore travel down the guide

along with the beam, and there will be the possibility for

prolonged interaction between the beam and these waves. At

this point the Cerenkov FEL begins to operate exactly like a

conventional traveling-wave-tube. The dielectrically-loaded

waveguide acts as a slow-wave structure, and the electron

beam, under proper conditions, can be made to do work on the

wave, so that there will be growth in the wave at the

expense of the energy of the beam. (Fig. 1-2).

It is on this aspect of the Cerenkov FEL that we will

focus on in this paper. We will look at one particular

resonator geometry, the partially- filled rectangular

waveguide, and how it will work as a resonator for a

Cerenkov-type FEL/traveling-wave-tube. Therefore our

approach will be to assume that a wave already exists in the
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guide, and then to introduce an electron beam and allow it

to do work on the wave, causing the wave to grow. The

Cerenkov interaction is not presented explicitly in the

calculations, but it should be kept in mind that this is

where the wave originated.

Finally, we refer back to the original statement that

the Cerenkov FEL will be useful in filling the gaps left by

lasers and conventional microwave technology in the

electromagnetic spectrum. Considering tunability, from the

above general discussion it can be seen that in principle at

least, the Cerenkov devic. will be tunable simply by varying

the beam velocity, so that the beam will be synchronous with

waves with different frequencies. (Note that this is a

general feature of all traveling-wave-tubes. Note also that

the growth rate of the wave will certainly vary as the phase

velocity changes, so that the operational bandwidth of the

device will also be of concern.) Concerning the problem of

the size of the resonating structures, it has been found

that in general for a Cerenkov FEL there is a correlation

between the resonator dimensions and the output radiation,

but that the scaling is such so that the problems mentioned

above: heat dissipation, manufacturing tolerances, and beam

focusing, are at least partially eased. 4 ,5 In this paper we

will consider both the bandwidth and frequency output for

the partially-filled rectangular resonator for the Cerenkov

FEL.

e-cI
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The CERENKOV FEL AT DARTMOUTH COLLEGE

The Cerenkov-type FEL at Dartmough College has been in

operation since 1979. The initial work done with the device

focused primarily on determining what the relation was

between the voltage of the electron beam and the frequency

of the output radiation, and comparing the experimental

results with the theoretical predictions discussed above.

More recent work has focused on predicting and measuring the

output power of the device. Also, while the original output

wavelengths were usually between 1 cm and .5 cm, some recent

work has centered on trying to get output wavelengths down

to the 1mm range.

All of this work has had one thing in common, it has
I.

been done using a cylindrical geometry for the resonator

design. The cylinder was the initial geometry choice

because of its very high level of symmetry, which allowed

for the use of the simplest possible electron beam

generation and focusing, the simplest schemes for coupling

the output radiation out of the device, and also the

simplest methods for actually building the parts of the

machine.

Motivation for Considering the Rectangular Geometry

While the cylindrical geometry offers several

advantages due to its high level of symmetry, it does have

two potential disadvantages. The first is a problem that

.
- "



almost certainly has already been seen with operation of the

device at Dartmouth. This is the problem of electron

trapping on the inner surface of the dielectric. Inevitably

when a high current electron beam is fired down a long tube,

some of the beam will strike the inner surface of the tube.

Since in the partially-filled, dielectrically-loaded

cylinder this inner surface is a dielectric, and in fact,

for highest efficiency in operation of the FEL, a very

low-loss dielectric, these electrons may have a very

difficult time escaping from the dielectric surface and

getting to ground. Since it is easier for charge to flow

along the surface of a lossless dielectric than through it,

the RC time related to the leaking off of these electrons

from the dielectric surface will depend on the length of the

surface path to ground. This path can be very long in the

cylindrical geometry, on the order of the length of the

resonator.

In the partially-filled rectangular geometry which we

will consider here, however, the surface path length to

ground will be on the order of the width of the guide.

(Fig. 1-3). Thus we would expect this rectangular resonator

to have less of a problem with charge build-up on the

dielectric surface. This should allow for more stable bea~m

propagation (the trapped electrons tend to repel the

electron beam, which causes problems in getting the beam

down the tube) , and for generally cleaner operation of the
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device (no breakdown of the dielectric due to excessive

charge build-up.)

The second potential disadvantage to the cylindrical

geometry is the same high level of symmetry that was

initially considered to be of such advantage. This high

symmetry makes the control and characterization of the

polarization of the output radiation difficult. While

polarization of output radiation has not yet been important

to this particular experiment, eventual use of the Cerenkov

FEL as an amplifier will almost certainly make it so. (We

will take a brief look at the potential of a Cerenkov device

using the rectangular geometry as an amplifier in chapter

5.) So for these two reasons: charge build-up and control

of the polarization of the radiation, we will consider the

use of the rectangular geometry as a resonator for use in a

Cerenkov-type FEL.

TOPICS

In Chapter 2 we will briefly describe two types of gain

calculations which we hope to apply to this geometry, the

single-particle and the collective gain calculations. The

two types correspond to two regimes of beam density and gain

magnitude. The single-particle calculation may be used when

the beam density is low and the gain is small, and the

collective gain calculation must be used for dense baams and

high gains.
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In Chapter 3 we will consider the resonator itself in

detail and discuss the types of modes that can be

propagated in it. We will then present the dispersion

relations (from which phase velocity vs frequency

information can be obtained) for each of tne mode types.

The last part of Chapter 3 will look at the actual fields of

each mode type and predict the relative growth rates for

each. All of the results in Chapter 3 will have been

obtained from exact solutions of Maxwell s equations, but

details of the calculations will be defered until appendix

1

In Chapter 4 we will apply the two gain calculations to

the results from Chapter 3, and compare the results.

Finally, in Chapter 5 we will consider the use of the

rectangular geometry as a high gain, high energy amplifier.



Chapter 2: Gain Mechanisms

Introduction

In this chapter we will discuss two types of gain

calculations, the single-particle gain and the collective

gain calculations, which we will eventually apply to the

rectangular-waveguide resonator geometry. Before getting

into specifics, however, let us first consider the general

requirements that must be met in order to get significant

growth of an electromagnetic wave due to an electron beam

doing work on it. First, the electromagnetic wave must have

a field component on which the beam can do work, which means

a component in the direction of beam travel. (We will now

assume that this direction is the z-direction.) Second, the

beam velocity should be just greater than the phase velocity

of the wave.6 This second point is important because if the

beam travels at a speed radically different from that of the

wave, it will be in the correct phase relation to the wave

for too short a time to do any useful work on the wave, and

if it travels at a velocity close to the wave velocity, bu -

slightly less than it, the wave will end up doing work on

the beam, so that instead of the desired growtn of the wave

at the expense of beam energy, we would get an acceleration

of the beam at the expense of the energy of the wave.

A highly simplified way of looking at this process is

to imagine the electrons traveling along with the wave,

13
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where the wave is represented by a.series of field-strength

peaks and troughs (Fig. 2-1). If the electrons travel at a

speed slightly greater than the wave velocity, more

electrons will be trying to "run up" the hills, losing

energy to the wave, than will be "running down" the hills,

and gaining energy from the wave. If however, the beam

velocity is less than the wave velocity, the situation is

reversed, and more electrons run down the hills than run up

them, and the wave loses energy to the beam as it

accelerates the beam.

Beam-wave Coupling Strength

An important aspect of the interaction between the beam

and the wave is the relative strength of the Ez-compcnent of

the wave. Since this is the field component that the

electron beam does work against, the stronger this component

is relative to the other components of the wave, the more

powerful the interaction between the beam and wave wi;l be.

This fact will be shown to be very important in chapters 3

and ."

Single-Particle Gain Calculation

In this calculation the general approach is to first

use Maxwell's Equations to determine the fields in th?

resonator. Then, while keeping these fields constant, the

electron beam in introdued, and -ich electron in the team

--
- -
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is allowed to do work on the fields in the resonator. No

account is taken of how the other electrons in the beam may

affect this interaction of a single electron with the

fields, and no account is taken of how the fields may change

due to the work being done on them by the electron~s.

Therefore this calculation is most useful when the beam is

tenuous enough so that the electron-electron interactions

may be ignored, and when the gain is small enough so that

the fields may be approximated as being constant during th. e

transit time of an electron in the beam through the

resonator. Since the calculation has already been well

presented,7 only the initial assumptions, the results, and a

few comments will be presented here.

We first note that any growth rate (or loss rate) may

be expressed as an inverse cavity Q, where:

1 = -1 de
Qb d t-

and where:

Qb=cavity Q due to the beam,

= the total energy stored in the resonator, and

C = the frequency of the radiation in radians.

Therefore, /Q b is a relative measure of energy gained or

lost in one period by the wave.

There is one important assumption other than the low

beam density made in doing this calculation. This

L1
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assumption is that the beam is relatively cold, (i.e. that

most of the electrons are traveling at the same velocity.)

so that we may approximate the electron velocity

distribution as a delta function in velocity space. With

this assumption, the single-particle gain calculation

yields:

L3 2
1 1 nb  L E 0  G'(e)

-b 3r3 1 0 no $0

where: .V h

(note that we have assumed that Vpkase cf tne

wave . vbeam)

and where:

ib = beam current

2
T ec , where 2

io =r 0whee r Tn 2- 17 00Dz,

also, L = resonator length,

Ez0 = a field amplitude at some reference pcint.

i a rel-tive beam density term , which equals

E A Ab  Ab  beam area

IL 0 2A
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where n : the beam density (a point function,

set equal to no).

Ez = the electric field in the direction

of beam propogation.

(also a point function)

and finally, G(S) s in 2 e , where e = (kv - w)L/v.

It is this last term, G' (6) , that contains the crucial

information concerning whether work will be done by the beam

on the wave, or visa versa. It describes the phase slippage

that an electron in the beam sees relative to the wave

during one pass through the resonator. Put more simply, it

tells whether more electrons run up hills or down them. A

plot of G'(9) vs. is given in Fig. 2-2. For the beam to

do work on the wave. it turns out that G'(e) must be < 0.

We will therefore assume for the rest of the paper that

2.2, so that G'(e) -. 13, which will give us maximum gain

as a function of

Collective Gain Calculation

In this calculation the electron/electron interactions

are taken into account by treating the electron beam as a

fluid subject to the standard continuity and conservation

eauations. There are several possible approaches to this

problem, but the one used here has been chosen because it is

.L
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a well-known technique with well- known results. It is

presented in its entirety by Felch, 8 so again, only the

initial assumptions, the results, and comments are given

here.

The approach used by Felch is to first derive the usual

dispersion relation for the empty resonator, and then to

introduce the electron beam. A second dispersion relation

is derived, this time including the beam in Maxwell's

Equations. Finally, the beam-dispersion relation is

expanded about the no-beam relation, using a Taylor series

expansion:

(),k)= D(c00 ,k 0 ) - _D

Ol 0,k

where AW} is the complex frequency shift due to the presence

of the beam. The imaginary part of this shift gives the

growth-rate of the wave due to the beam. Note that the only

assumption made in this calculation is that the expansion

given above is valid, which requires simply that >> 1.

Thus there is no requirement on the beam density or on tha

total gain, as long as this initial assumption holds.

Since the form of 40, will depend directly on the form

of the dispersion relation, its exact solution is not given

until Chapter 4. (The dispersion relation is found in

Chapter 3.)



Chapter 3-' Fields and Modes for the Rectangular Resonator

LSM and LSE Modes

We will now take a close look at the modes for the

partially-filled rectangular resonator The dimensions of

the waveguide are given in Fig. 3-1, and the dielectric

constant of the dielectric slabs in the resonator is

This waveguide geometry will support two different

mode-types. called LSE and LSM modes 9 which are

distinguished by the absence of particular field components.

In the LSE mode the Ex field component is zero while in

the LSM mode the B field component is zero. (LSE mode
x

stands for longtitudinal section electric mode which means

simply that all E fields are parallel to the dielectric

interfaces Similarly LSM mode stands for longtitudinal

section magnetic mode.) (Fig. 3-2)

Each of the above mode-types LSE and LSM yields a

different dispersion relation or frequency vs.

phase velocity condition These two dispersion relations

are obtained by first finding the proper field shapes for

each mode and then matching the proper boundary conditions

across the dielectric interfaces (See appendix 1 for a

complete description of the derivation.) The two dispersion

relations so derived are given below

21
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Fi. -i enra dimensions of rectangular wavequi~de

with dielectric slabs.
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LSE field Components Ex~o

-SM ield Coniponenis, Bx=~

Fig. 3-2. Field Ccmtoic~cnts of LSE adZ c'es.
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LSM tanh(qa) cot(sb) 6 b

qa sb a

LSE (qa) tanh(qa) a a (sb) cot(sb)

b

where q 2  k 2_ W 2 + t2

2
c

s 2  2 Er-- k2 + t 2

c 2

and t nTr n = 1,2.3,

d

and finally where

= frequency in radians,

k = 2T / \ g and \g = the guide wavelength.

The Infinite, Two-slab Resonator; Comparison of LSE and

LSM Modes with TE and TM Modes

A highly simplified but similar geometry to the

partially filled rectangular waveguide is the infinitely

wide, two-slab waveguide. (Fig. 3-3) Solving Maxwell s

equations for this resonator reveals that this geometry will

support two different mode types and that these mode types

are the familiar tranverse electric (E. = 0) , and
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II

Fi. 3-3. Infinite, s cec..er; ,no aration
with y).
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tranverse magnetic (Bz  0) modes that are characteristic of

many waveguide systems. A close look at the fields of the

TE and TM modes reveals a close parallel between them and

the LSE and LSM modes It can be shown that for the TM(E)

mode with no variation in the y-direction B (E ) must eaual
x x

0 Thus the LSM and TM modes both have B = 0. and the LSE
x

and TE modes have E = 0.x

We might therefore expect the two sets of modes to

share other characterstics. Specifically, since E = 0 forx

both the TE mode and the LSE mode, and since E = 0 for thez

TE mode, we might expect the LSE mode to have a relatively

weak E component. If this is found to be true, then as wasz

noted in Chapter 2, the coupling between the electron beam

and an LSE wave would also be relatively weak. To test the

hypothesis we plot

Energy contained in Ez field component

Total Energy in the fields in the rescnator

for both the LSE and LSM modes These plots are shown in

Figs. 3-4 & 3-5. In Fig 3-4 the dimensions of the

resonator used are typical of what we would expect to use in

a real experimental situation. In Fig.3-5 we let the

y-dimension of the resonator get very large, to show that

the LSE mode does become even more TE-like as the infinite.
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for WR-42 waveguide.
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2 slab dimensions are approached. As we expected. the

relative amount of energy found in the E field component ofz

the LSE mode is much less than that for the LSM mode.

In Chapter 4 we will actually calculate the growth

rate for both modes, and we will see that this lower Ez

strength does indeed give worse beam-wave coupling and

lower growth rates for the LSE mode. Therefore, we will

defer further discussion of the LSE mode until then and

concentrate in the higher growth-rate, and so potentially

more useful, LSM mode.

Potential Experimental Parameters: Cerenkov

Millimeter FEL

Up to this point our discussion of the LSE & LSM modes

has been very general. Now, however, we choose specific

sets of dimensions and parameters for the resonator, where

our choices are based on convenience in terms of eventual

experimental application in the Dartmouth Cerenkov FEL.

Note that even though we lose generality in terms of the

actual numbers produced here, the techniaues used are

applicable to any set of parameters that may be available.

The Dartmouth Cerenkov FEL experiment is a low voltage,

low current device that is meant to run in the millimeter

and submillimeter part of the radiation spectrum. Since it

uses boron nitride as the dielectric in its resonators, we

also will do so. (Boron nitride has a dielectric constant
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of 4.2) . Also, we will limit our voltage range to from 0 to

300 Ky, again because this is what is available from the

Dartmouth FEL. Finally, for resonator dimensions we choose

three commercial waveguide sizes that are commonly used in

standard millimeter wave applications. These choices will

make building actual resonators to match our theoretical

models very easy and inexpensive. The waveguide sizes are

labeled WR-42, WR 28, and WR 12, and their dimensions are

shown in Fig. 3-6.

LSM-Mode: Output Frequency Characterization

Now that we have chosen a definite set of parameters

for our resonator, we are ready to use them in the LSM mcee

dispersion relation to determine what frequencies we mgnt

expect from an actual device using these dimensions. (We

will consider frequency output rather than wavelength output

because this is what has traditionally been used in the

Dartmouth FEL experiment ) Therefore we return to this

dispersion relation:

tanh(qa) - cb cot(sb)

qaa

We plot output frequency ( =Q/2 T ) vs. cperat,2r-

voltage for several slab thicknesses in each of tse

... . ... . . .. ..." '' -- i iia I... i i [ r i i-
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1 0 .6 7 rm .7 
1 L

- 42 W-28

b*R- 12

Fig. 3-6. Dimensions for lo.-42, tWR-2 8, citJ-2sz
wavegides.
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waveguide sizes. Again note that operating voltage is

determined by matching the phase velocity of the wave with

the beam velocity for a given beam voltage. (Figs.

3-7, 8,9).

Comments

We note immediately that frequency does scale as the

dimensions of the resonator, both in terms of guide

dimensions and in terms of dielectrc slab thickness.

Therefore we will eventually run into the same problems

mentioned in the introduction, such as heat dissipation and

beam focusing, as we try to go to higher frequencies

(shorter wavelengths). However, operation at 100 Ghz and

above is considered interesting and potentially useful, and

note that both the WR-28 and the WR-12 guides can be made to

operate in that region of the spectrum The WR-42 resonator

also will operate above 100 Ghz, but only with relatively

thin dielectric slabs

Thus, operation above 100 Ghz is possible with these

commercially available waveguide sizes and with moderately

thin dielectric liners. Now the gain calculations reviewed

in Chapter 2 will be returned to in an attempt to determine

whether significant growth rates can be obtained from this

geometry at these desired frequencies.

V.m
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FREQUENCY CGhzD v=. V,=, Itc~zc CKVD

30

b m

7 e

Lb I M

V<Z L t CKV D

Fig. 3-7. Radiation frequency vs. operating v'olta.ce for
WR-42 waveguide, wit ifeent dielectri sIa
thicknesses. Dielectric constant =4.2. (b
slab thickness.
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FREQUENCY CGhz)=DV1~~CV

2S2

b =.2 mm,

ISO

00E0 200 2S >0 3

V<>Jt-cGc_ CKV)

Fig. 3-8. Radiation frequency vs. operating v'oltage for
WR-28 waveguide, with different dielectric slab_
thicknesses. Dielectric constant 4.2. f(b
slab thickness).
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FREQUENCY CGh=) v=. Vci c> IKV)

b =.6mm
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V-0 I e CKV)

Fig. 3-9. Radiation frequency vs. operating voltage for
WR-12 waveguide, with different dielectric slab

thicknesses. Dielectric constant = 4.2. (b

slab thickness).



CnaDter 4: Gain for the LSE & LSM Modes

Beam-Dielectric Separation: Gain Mecnanism Detuning

As noted in Chapter 1, if too many electrons from tne

electron beam are allowed to strike the dielectric slabs in

the resonator, unstable beam propagation, and eventually,

damage to the dielectric slabs will result. Even though the

rectangular geometry should have better charge bleed-off

properties than the cylindrical resonator, no lossless

dielectric can tolerate large-scale electron dumping on it

for prolonged periods of time. Therefore, in any real

device there will have to be some separation of the

electrons from the dielectric to prevent too many "stray"

electrons from striking the slabs. This separation will, of

course, affect the interaction between the electrons and the

dielectric, and so will affect the growth-rate of the

device. Thus we must account for this separation while

doing the single-particle and collective growth-rate

calculations. To do this we note the term:

n _ 1 JA nI

no no IEzOK Ab

from the single-particle gain expression in chapter 2. if

w let the beam density be constant over the beam area, b z

have the beam a distance h away from the dielectric, we

find that n is given by:

36
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1 sinh[2q(a - h)) +I

no  4 cosh 2 (qa) 2q(a - h)

(see appendix 2)

This expression will be used directly in the single-particle

calculation, and gives exactly the effect of the

beam-dielectric gap on it.

Unfortunately, there is no direct way to account for

the beam-dielectric gap in the collective gain calculation.

We can, however, use the single-particle result to get an

effective beam current density, which will give us an

approximation of the effect of the gap on the growth-rate.

To do this we note that if we let h = 0, we are effectively

allowing the beam to fill the entire vacuum region of the

resonator, which is the assumed situation for the collective

calculation. For h = 0 we get: F
nh=0 = 1 sinh(2qa) + 1

n 4 cosh 2 (qa) 2qa ]
We can use the ratio of these two expressions to get

an effective current density for the beam. We simply take

nh/nh=0, and multiply it times the beam current density.

Thus we have:
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lb(eff) = Ib [_sinh[2q(a-h)] +
2d(a - h) 2ad 2q(a - h)

L sinh(2ga) + 1

Using this effective beam current density in the

collective calculation will take into account the detuning

of the growth-rate due to the presence of the gap.

Finally, a reasonable value for h, with moderate

efforts at electron-beam focusing, is h = .lmm.1 0 Smaller

values of h are in practice achievable, but only with fairly

sophisticated electron-focusing techniques. We will

therefore use h = .lmm for the remainder of this paper.

SINGLE PARTICLE GAIN CALCULATION

Now that we have an expression for n/n0 , we need only

an expression for the total energy stored in the resonator

to finally get the single-particle 1/Qb' The total energy

is found by a simple integration of the fields over the

resonator (See appendix 3), and the results of this

integration, for each of the two mode types, are given

below.
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ELSE dL IEZO 12 [1 + k2 1 [1~L + cot 2 (sb)]

16r [ t2

- sin(2sb) + a 1 + sinh(2qa)

2sb cosh 2 (qa) 2qa

8LSM dL IE 12 W2 F+ t2~1 b3 ,E2
16 TT C2  L k 2L (sb)2

i + sin(2sb) [i + cot 2 (sb)] +

2sb

a3 1 [ sinh(2ga) -J1
(qa) 2cosh 2 qa) 2qa

We are now able to compute i/Qb. Note, however, that

for amplifiers a more commonly used parameter than the

resonator Qb is the gain per pass, which will be of the form

o(.Le To find o L from i/Qb, we note that if the fields in

the resonator have a temporal growth-rate of the form e2LU t

(the reason for this choice will become clear when the

collective calculation is done) we find from its definition,

that 1 /Qb will be equal to 2ACJ/Y , so that the temporal

growth-rate will be e(WJ/Qb)t. Now note that the growth per

pass will equal the temporal growth-rate with t replaced by

t F J
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=C L/v, the transit time of an electron through the

resonator. Therefore we have:

W (dL or

Qb Qb v

Finally, at synchronism (vph = beam velocity) we have

v L)/k, so that:

kL _ cL

Qb

Thus we are able to find c L, which is the parameter we

now plot. From the expressions for I/Qb and the total

energy in the resonator it can be seen that the expression

for o<L will have a term L3 Ib/IO in the numerator.

Therefore we divide out this term and plot finally a current

and resonator-length independent quantity: (Fig. 4-1 - 4-4)

[ L

In Fig. 4-1 we have plots for both the LSE and LSM modes

using typical potential experimental parameters. We

immediately see that c L for the LSE mode is in fact much

less than for the LSM mode, justifying the previous

concentration on the LSM mode. In Fig. 4-2 - 4-4, vkL for

each of the three waveguide sizes is plotted, where for each
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Fig. 4-1. Single-Particle a< L/L 3 (Ib/I0) for LSE and LSM

modes. Resonator dimensions: WR-42 waveguide

size, with 1mm thick dielectric slab.
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"ALPHA L v. FREQUENCYCGhz)
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Fig. 4-3. Single-Particle c<L/L (I b/1O), for WR-28 size

resonator. (b = dielectric-slab thickness).



44

"ALPHA L L v=. FREQUENCYCGh=)
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Fig. 4-4. Single-Particle o<L/L3 (b/10) for WR-12 size

resonator. (b = dielectric-slab thickness).
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waveguide size, several dielectric-slab thicknesses have

been tried.

Single Particle Growth-rate Analysis

One striking result of the growth rate calculation for

the different waveguide sizes is the apparent very low gain

for the larger waveguides. However, this result is

misleading. Remember that the plots shown represent o/, L

divided by beam current, and no account nas been made of the

snaller waveguide size in relation to this total current.

mturally, the smaller guides will have a higher current

density for a given current and so will have higher gains.

To get truly equivalent growth-rates for different waveguide

sizes, the gain of the larger waveguide should be multiplied

by the ratio of the area of its beam region to the area of

the beam region of the smaller guide to which it is being

compared. If this factor were included, it can be seen that

the waveguides would be roughly equivalent in gain.

Operational Wavelength

Two important parameters can be determined from the

shape and position of the gain curves in relation to the

frequency spectrum. These parameters are the optimum

operating frequency, and the frequency bandwidtn. Ideally

the operating frequency of a promising experimental device

should be as high as possible, and it should be at least



46

greater than or equal to 100 Ghz. We see that any of the

waveguide geometries with gain plotted here satisfies that

criterion, as long as we restrict the geometry to moderately

thin dielctric slab thicknesses of .8 to .6mm. As expected,

the WR-12 waveguide gives the highest operating frequencies

(smallest wavelengths), but of course will have the most

trouble with beam focusing and heat dissipation. Any of

these resonators, however, can be made to operate at

"interesting" frequencies of 100 Ghz or higher.

Resonator Bandwidth

The second important parameter that can be determined

from these plots is the potential operational bandwidth of a

device using these resonators. It is obvious from the plots

that these resonators offer an enormous band-width. Even

the worst case shown, the WR-28 guide with 1mm thick

dielectric slabs, offers a half-maximum to half-maximum

frequency bandwidth of about 45 Ghz, with a center frequency

of 60 Ghz. Such an enormous bandwith would be very

attractive in any type of oscillator or amplifier.

COLLECTIVE GROWTH RATE

As mentioned in Chapter 2, the collective growth-rate

can be derived from an expansion of the dispersion relation

which includes the beam, about the dispersion relation which

does not include the beam. The calculation has been done
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for the infinitely-wide two slab geometry,11 and since the

dispersion relation for that geometry is of the same form as

the dispersion relation for the rectangular geometry, the

same derivation may be used. (The difference between the two

dispersion relations lies in the difference of the

wavenumbers, s and q.) The result obtained for this

dispersion relation is given below:

3 L3_ 2 c1

O'3 p4 3 k

Fl + a sb tan(sb) 1
b cosh 2 (qa)

b2_ + a2  1 + _ _ _ _ _ -

(sb) 2  b2  (qa)2  (sb)tan(sb)cos2(sb]

a2 sech 2 (ga)

b2  tanh(qa)

where (p2 = the plasma frequency, which = 4TI nO e
2 /m,

p0
and where n. = beam density, and the other terms are the

same as defined for the single-particle calculation.

If we note that Ib = nevAb, (Ab = beam area), we find

that:

#V



48

2 4T c 2  Ibp Ip b
1 0 Ab

Finally, from page 38, we recall the expression for

the effective beam current density, and note that this must

be substituted for Ib into the above expression for 64

Collective Growth per Pass

As noted in Chapter 2, 6d is the imaginary frequency

shift due to the presence of the beam. Thus the energy in

the wave will grow with an e2Jt dependence. As in the

single-particle calculation we can relate this temporal

growth to the growth per pass, which gives

b4L 2 ,&WkL

Also, just as in the single-particle calculation, the

above expression has a factor in it dependent on Ib and L,

specifically, L(Ib/IO)1 /3 . Thus the plots in Figs. 4-5 -

4-7 show o L divided by this length-current term. It is

clear from the plots that roughly the same output

frequencies and bandwidths are predicted by the collective

calculation as were predicted by the single-particle

calculation.
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Fig. 4-6. Collective CK L '(I b/1o 0 , for wR-48 size

resonator. (b =dielectric-slab thickness).
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Collective Growth Calculation Approximations

Several approximations were made in obtaining the above

results:

-- First, it was assumed that 44d /Ci << 1, so that the

Taylor-series expansion is valid. We will test this

assumption with practical current and resonator parameters

in Chapter 5.

--Second, an approximation of tanh(u) = u was made, 12 the

validy of which requires that

1 P 2(JP < 1

2 e3 (4j) 2

This approximation will be questionable for high-density,

low voltage beams. With our definition for Q) 2 itP

becomes:

Ib 2 10

Ab c2 L 2Tr

Again, we defer applying this requirement to calculated

results until Chapter 5.

--Finally, an approximation was made in using the infinite

slab result at all for the rectangular geometry. This

required that Bz for the LSM mode approach zero, so that tne
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mode could be approximated by a pure TM mode. The validity

of this approximation is checked by plotting the energy

contained in the Bz-component of the field, over the total

energy in the fields. This plot is given in Fig. 4-8. We

see that the Bz-component of the LSM mode is indeed quite

small, with a maximum value of about 9%, so that use of the

TM-mode growth-rate calculation should be a good

approximation.
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Chapter 5: The Dartmouth Cerenkov FEE, as an High Power

Amplifier

In this chapter we will complete the specialization,

begun in Chapter 3, of our parameters to match those of the

Dartmouth FEE,. The purpose of this chapter is two-fold.

First we want to see if the Dartmouth FEE,, using the

rectangular geometry, could operate as a high-gain,

high-frequency amplifier; and, second, we wish to check that

any approximations that we use will be valid for these real

experimental parameters.

Use of Collective Calculation

We must first determine which of the two growth

calculations, the collective or the single-particle

calculation, should in general be used for high-gain

applications. Note that the difference between the two

calculations lay primarily in the assumed magnitudes of the

gain. The single-particle calculation assumes that the

fields are constant while the electrons do work on them.

Thus it requires a gain per pass small enough so that the

fields can be approximated to be constant during a transit

time of an electron in the electron beam. We see

immediately that for high-power amplification, which

requires a gain per pass of at least e =10, tnat this

constant-field approximation must fail. Thus we are left

55
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with the collective calculation for any high-gain

application. Again note that the collective calculation

requires that 4(d/C)<< 1, but assumes nothing about the

total gain per pass.

Parameters

We have already limited ourselves to the commercial

waveguide sizes, and to operating voltages of less than 300

KV, to accomodate ourselves to the Dartmouth FEL. Thus we

need only specify current density and resonator length to

get parameters that will be completely applicable to that

2device. We choose a current density of 10 amps/cm , which

is just within the capability of the Dartmouth device, and

we choose a reasonable resonator length of 10cm.

Results

We now plot :<L vs. frequency for each of the waveguide

sizes, and refer the reader to Fig. 3-7, 8, & 9 for the

corresponding operating voltage information. (Fig. 5-1 -

5-3). Note that for each of the waveguide sizes, 0. L falls

between 3 and 4, which means that the gain per pass, e ,

will be approximately 20 to 50. (In terminology more

commonly used for amplifiers, this corresponds to gain per

pass of 13 to 17 db) . As mertioned earlier, for usefol

operation as a high-power amplifier, gain per pass cf 10 (

10 db) is necessary. Thus we are fairly well above this
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requirement. (Note however, that losses in the dielectric

and the conducting walls of the resonator will lower this

performance, though certainly not below the required 10db.)

Finally we note that peak gains at frequencies up to 200 Ghz

are possible with the thinner dielectric slabs and the

smaller waveguide sizes. Thus we may conclude that the

2-slab, rectangular resonator, using these parameters which

correspond to those available from the Dartmouth FEL, should

operate effectively as a high-power, high-frequency

amplifier.

Now we need only to check the validity of the two

assumptions that were made in the collective calculation.

The two assumptions that must hold are:

1. <) << 1 , and

2. Ib 2WT ( 1

Abl1 (&G/C) 2 3

Calculating peak &W;'s from the plots of o4L gives that

4 w/) ranges from .03 to .01, which is certainly << 1. Doing

a similar calculation for the second expression gives

I2T 1

Abio (&6W/c 2

_12...L



61

Thus we see that both these assumptions do hold for these

particular parameters and results.

Conclusions

We have seen generally that the rectangular, 2-slab

resonator for a Cerenkov FEL does show promise for use as a

high-power amplifier at frequencies up to 300 Ghz. Even for

the relatively low current, low voltage FEL at Dartmouth,

gains per pass greater that 10db, at frequencies of up to

200 Ghz should be achievable. The obvious next step must be

an experimental verification of these results.

S

-!



Appendix 1: Derivation of Dispersion Relations for LSE and

LSM Modes

Maxwell's equations:

17-D = 4lTe

1.B = 0

7AE = -1 _B
c

VxH = 4TT J + 1 ;D_
c c

if reduced to component form, yield eight equations relating

the different field components to one another. 13 We

immediately assume a time- and z-dependence of ei(kz -wt)

with propagation in the z- direction, and further assume

that there are no sources present. Then the x- and

y-component equations of Maxwell's curl equations can be

reduced to the following form, with all transverse field

components in terms of the z-field components: 1i

EY= i k Ez - c _Bz-

p c Cy ,

s...k ~E Y

ikp 2 c cx
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B k-
x - C z

where: p 2 = ( -)26 k2

2
C

We now apply these equations to the following geometry:

.- _ region 3

-- ..... . ..; . .... _y regiJon 2

iJregion I

If we assume that this geometry has infinitely conducting

walls, the following boundary conditions on the fields must

hold:

Etan = 0 on conductors ------ EzEy = 0 at x = +(a+b)

Ez ,Ex = 0 at y = O,d

Eta n continuous -------------- E z,Ey continuous at x = +a

Dno r continuous -------------- Dx continuous at x = +a

All B-components are continuous at x = +a.

It can be shown 9 that this geometry will support two

mode-types: LSE, (for which Ex = 0), and LSM, (for which Bx



64

= 0). Thus, from the transverse-component form of Maxwell's

Equations given above, we have the following relations

between Ez and Bz for each of the mode-types.

LSE:

k Ez = - z___. x c y

LSM:

k Bz  = E- __Ez

x c y

Geometry of Fields

In order to actually calculate the fields, we initially

assume that all field components will be made up of some

combination of trigonometric functions, of the general form:

[A sin(sx) + B cos(sx)] [C sin(ty) + D cos(ty)]

We next apply the boundary conditions on the conducting

surfaces to this general form, and find that to satisfy

these conditions Ez must be of the form:

Ez = A sin(ty)[B sin(sx) + C cos(sx)]

with t = , n = 1,2,3...

d

I -
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We now can use the transverse-field Maxwell's Equations

to get the rest of the field components. First, however, we

must address the fact that we have 3 regions in the

resonator. Obviously regions 1 and 3 must be identical.

They will however, differ from region 2 in that they will

have different wavenumbers (due to the difference in

dielectric constant.) Therefore, we let s be the

wave-number in the slab regions (1 & 3), and let r =

wave-number in the vacuum region, (Region 2). We now make

one final assumption before actually finding the fields. We

assume that the fields are symmetric about x = 0. We do

this because we will eventually want to couple the fields to

an electron beam traveling in the vacuum region of the

resonator. Thus, to get maximum coupling between the

resonator fields and the beam, the fields must be as strong

as possible in the that region. Note, however, that fields

asymmetric about x = 0 must equal 0 at x = 0, while

symmetric fields will never equal zero in the vacuum region.

The symmetric fields will, therefore, couple more strongly

to the beam than will asymmetric fields. Thus we consider

only the symmetric fields here, which simply means that we

use only cos(x) terms in the expressions for the fields in

the vacuum region. Thus the following fields for each of

the modes in each of the 3 regions of the resonator are

found.
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LSE MODES

Region 1:

E= A sin(ty) [sin(sx) + tan[s(a+b)] cos(sx)]

Ey = (ik/t) A sin~ty) Fsin(sx) + tanls(a+b) cos(sx)]
y IL

B z= ks A cos(tIy) [c os(sx) - tants(a+b)) sin(sx)]
Z (Q/c) t

C=i (s 2 _ w -2 2 A cos(ty) s x) + tan Is (a+b)) cos (sx)7

Kt( W/C)

B y= i s A sin(ty) LCossx - tan[s(a+b)3 sin(sx)]
y (W~/C)

where A =E 0  [1 - tan(sa)tan(sb)]

sec(sa) tan~sb)

and E the magnitude of Ezat the center

of the dielectric interface.

Region 2:

E z= F sin(ty)cos(r-x)

E = (ik/t) F cos(ty)cos(rx)
y

Bx ~ ~ I =)J ( C cos(ty)cos(rx)
W/C) t
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B y=-i r F sin(ty)sin(rx)
(W (c/C)

B z= -kr F cos(ty)sin(rx)
LZ (J/C) t

where F = E zo /cos(ra).

Finally,

Region 3 = Region 1

LSM MODES

Region 1:

Ez same as for LSE-mode.

Ey (-it/k) A cos(ty) Fsin(sx) + tan~s(a+b)] cos(sx)-

Ex=(k 2 + t2) A sin~ty) [cos(sx) -tants(a+b)] sin(sx l

By = i (cjrz/c) A s in (ty) [c os(sx) -tan[s(a+b)] sin(sx)1
y

Bz = (WJC/c)t A cos(ty) [cos(sx) + tan[s(a+b)J sin(sx)
Zks

Region 2:
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Ez = same as for LSE-mode.

Ey = (-it/k) F cos(rx)cos(ty)

Ex = i(k
2 + t2 ) F sin(ty)sin(rx)

B =i(CJ!c) F sxn(ty) sin(rx)
r

B ( /c)t F cos(ty)sin(rx)
kr

and again,

Region 3 = Region 1

Now we must be sure that the rest of Maxwell's

equations, namely the divergence equations and the relation

given by the z-component of the curl equations, are

satisfied. These give the following requirements on the

wave numbers:

2= 2 2 k 2 t 2 ;

C2

s 2  2 1f k 2  t 2

C2
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Now note that for operation of a Cerenkov FEL, the waves

must be slow waves, so that k > WU/c. This, however, makes

r2 < 0. Therefore we let

2 2q = -, q = ir

so that all trigonometric functions of r become hyperbolic

functions of q.

As a final step we apply the rest of the boundary

conditions, the continuity conditions at the dielectric

interfaces, to these field components, and so obtain the

dispersion relations for the two mode types. This rather

tedious calculation yields finally:

LSM: tanh(ga) 1 b (sb)cot(sb)
qa a

LSE: -(qa)tanh(ga) = a (sb)cot(sb)b



Appendix 2: Calculation of n/n

The initial equation for n is

n = dA n Ez 12

zOj 2Ab

where Ab is the beam area, which equals 2ad (see page 63),

and where n is the beam density.

We assume that n = no, a constant over the area of the

beam, and we assume that the beam is a distance h away from

the dielectric surface. From appendix 1 we get that:

E Ez0 sin(ty)cosh(qx)ZLSM 
cosh (qa)

Thus we have:

d pa-h
n= n. dy sin2(ty)cosh 2 (qx) dx

(2ad)4cosh2 (qa) J
0o (a-h)

Therefore: ________ __________
nsi nh[2q(a-h)) + 1

no 4cosh 2 (qa) L 2q(a-h)
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Appendix 3: Calculation of the Total Energy

in Fields for LSE and LSM modes.

The total energy in an electromagnetic field is given by!4 :

1. + B H dV = e + Wm

167T

This quantity could be computed directly from the fields

given in appendix 1, but if we first note the W = we

can greatly shorten the calculation. For the LSE mode (with

EX = 0), we have:

£=2 We =1 Ey2 + J~z 12 3

8Tl

and similarly for the LSM mode (with Bx = 0)

C. W, !JByj 2 + JBzI dV
8lJv

Now for the rectangular geometry described in this paper

(see Fig. 3-1), these integrals become:

/- rd 2a+b a
dV = / dz dy 2 dx + dx

jV /0 /0/ -a 1
region I region 2

where the appropriate fields, corresponding to the

appropriate regions (vacuum and dielectric) must be used in

71
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the x-integration. These integrals are then done for each

of the modes, using the field components found in appendix

1. The results are cumbersome, but if we use the following

identities, obtained by doing the integrals and then

simplifying the results using simple trigonometric

identities, the final results can be reduced to those given

in chapter 4.

aa+bsin(sx) - tan[s(a+b)] cos(sx) ]2 dx =

1 - sin(2sb)

cos 2 [s(a+b)] 2 4s

S

a+ba cos(sx) + tanlls(a+b)] sin(sx)] 2 dx

1 + sin(2sb)1

cos2 [s(a+b)I L2 4s J
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